Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Global forests are increasingly lost to climate change, disturbance, and human management. Evaluating forests' capacities to regenerate and colonize new habitats has to start with the seed production of individual trees and how it depends on nutrient access. Studies on the linkage between reproduction and foliar nutrients are limited to a few locations and few species, due to the large investment needed for field measurements on both variables. We synthesized tree fecundity estimates from the Masting Inference and Forecasting (MASTIF) network with foliar nutrient concentrations from hyperspectral remote sensing at the National Ecological Observatory Network (NEON) across the contiguous United States. We evaluated the relationships between seed production and foliar nutrients for 56,544 tree‐years from 26 species at individual and community scales. We found a prevalent association between high foliar phosphorous (P) concentration and low individual seed production (ISP) across the continent. Within‐species coefficients to nitrogen (N), potassium (K), calcium (Ca), and magnesium (Mg) are related to species differences in nutrient demand, with distinct biogeographic patterns. Community seed production (CSP) decreased four orders of magnitude from the lowest to the highest foliar P. This first continental‐scale study sheds light on the relationship between seed production and foliar nutrients, highlighting the potential of using combined Light Detection And Ranging (LiDAR) and hyperspectral remote sensing to evaluate forest regeneration. The fact that both ISP and CSP decline in the presence of high foliar P levels has immediate application in improving forest demographic and regeneration models by providing more realistic nutrient effects at multiple scales.more » « less
-
Abstract AimAs one of the most diverse and economically important families on Earth, ground beetles (Carabidae) are viewed as a key barometer of climate change. Recent meta‐analyses provide equivocal evidence on abundance changes of terrestrial insects. Generalizations from traits (e.g., body size, diets, flights) provide insights into understanding community responses, but syntheses for the diverse Carabidae have not yet emerged. We aim to determine how habitat and trait syndromes mediate risks from contemporary and future climate change on the Carabidae community. LocationNorth America. Time period2012–2100. Major taxa studiedGround beetles (Carabidae). MethodsWe synthesized the abundance and trait data for 136 species from the National Ecological Observatory Network (NEON) and additional raw data from studies across North America with remotely sensed habitat characteristics in a generalized joint attribute model. Combined Light Detection and RAnging (LiDAR) and hyperspectral imagery were used to derive habitat at a continental scale. We evaluated climate risks on the joint response of species and traits by expanding climate velocity to response velocity given habitat change. ResultsHabitat contributes more variations in species abundance and community‐weighted mean traits compared to climate. Across North America, grassland fliers benefit from open habitats in hot, dry climates. By contrast, large‐bodied, burrowing omnivores prefer warm‐wet climates beneath closed canopies. Species‐specific abundance changes predicted by the fitted model under future shared socioeconomic pathways (SSP) scenarios are controlled by climate interactions with habitat heterogeneity. For example, the mid‐size, non‐flier is projected to decline across much of the continent, but the magnitudes of declines are reduced or even reversed where canopies are open. Conversely, temperature dominates the response of the small, frequent flierAgonoleptus conjunctus, causing projected change to be more closely linked to regional temperature changes. Main conclusionsCarabidae community reorganization under climate change is being governed by climate–habitat interactions (CHI). Species‐specific responses to CHI are explained by trait syndromes. The fact that habitat mediates warming impacts has immediate application to critical habitat designation for carabid conservation.more » « less
-
ABSTRACT The fundamental trade‐off between current and future reproduction has long been considered to result in a tendency for species that can grow large to begin reproduction at a larger size. Due to the prolonged time required to reach maturity, estimates of tree maturation size remain very rare and we lack a global view on the generality and the shape of this trade‐off. Using seed production from five continents, we estimate tree maturation sizes for 486 tree species spanning tropical to boreal climates. Results show that a species' maturation size increases with maximum size, but in a non‐proportional way: the largest species begin reproduction at smaller sizes than would be expected if maturation were simply proportional to maximum size. Furthermore, the decrease in relative maturation size is steepest in cold climates. These findings on maturation size drivers are key to accurately represent forests' responses to disturbance and climate change.more » « less
-
Tree fecundity and recruitment have not yet been quantified at scales needed to anticipate biogeographic shifts in response to climate change. By separating their responses, this study shows coherence across species and communities, offering the strongest support to date that migration is in progress with regional limitations on rates. The southeastern continent emerges as a fecundity hotspot, but it is situated south of population centers where high seed production could contribute to poleward population spread. By contrast, seedling success is highest in the West and North, serving to partially offset limited seed production near poleward frontiers. The evidence of fecundity and recruitment control on tree migration can inform conservation planning for the expected long-term disequilibrium between climate and forest distribution.more » « less
-
Abstract The relationships that control seed production in trees are fundamental to understanding the evolution of forest species and their capacity to recover from increasing losses to drought, fire, and harvest. A synthesis of fecundity data from 714 species worldwide allowed us to examine hypotheses that are central to quantifying reproduction, a foundation for assessing fitness in forest trees. Four major findings emerged. First, seed production is not constrained by a strict trade-off between seed size and numbers. Instead, seed numbers vary over ten orders of magnitude, with species that invest in large seeds producing more seeds than expected from the 1:1 trade-off. Second, gymnosperms have lower seed production than angiosperms, potentially due to their extra investments in protective woody cones. Third, nutrient-demanding species, indicated by high foliar phosphorus concentrations, have low seed production. Finally, sensitivity of individual species to soil fertility varies widely, limiting the response of community seed production to fertility gradients. In combination, these findings can inform models of forest response that need to incorporate reproductive potential.more » « less
An official website of the United States government
